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Position-Invariant Robust Features for Long-Term Recognition of

Dynamic Outdoor Scenes

Aram KAWEWONG?, Sirinart TANGRUAMSUB', Nonmembers, and Osamu HASEGAWA "', Member

SUMMARY A novel Position-Invariant Robust Feature, designated as
PIREF, is presented to address the problem of highly dynamic scene recogni-
tion. The PIRF is obtained by identifying existing local features (i.e. SIFT)
that have a wide baseline visibility within a place (one place contains more
than one sequential images). These wide-baseline visible features are then
represented as a single PIRF, which is computed as an average of all de-
scriptors associated with the PIRF. Particularly, PIRFs are robust against
highly dynamical changes in scene: a single PIRF can be matched cor-
rectly against many features from many dynamical images. This paper also
describes an approach to using these features for scene recognition. Recog-
nition proceeds by matching an individual PIRF to a set of features from
test images, with subsequent majority voting to identify a place with the
highest matched PIRF. The PIRF system is trained and tested on 2000+
outdoor omnidirectional images and on COLD datasets. Despite its sim-
plicity, PIRF offers a markedly better rate of recognition for dynamic out-
door scenes (ca. 90%) than the use of other features. Additionally, a robot
navigation system based on PIRF (PIRF-Nav) can outperform other incre-
mental topological mapping methods in terms of time (70% less) and mem-
ory. The number of PIRFs can be reduced further to reduce the time while
retaining high accuracy, which makes it suitable for long-term recognition
and localization.

key words: scene localization, scale invariant feature transformation
(SIFT), scene recognition, topological mapping

1. Introduction

Localization is an indispensable capability for both humans
and machines. Knowing “Where we are” has always been
an important topic in robotics and computer vision commu-
nities. Especially for mobile robots, knowing its position
is a fundamental requirement for navigation systems. The
topic has been studied for more than two decades using sev-
eral methods: metrical, topological, and hybrid (see [1], [2]
for reviews). Although sonar and laser scanners have tra-
ditionally been the sensory modalities of choice [3], current
advances in visual tools have made visual approaches more
attractive, providing richer information at a lower price.
From the perspective of computer vision, an efficient
robot vision system might need to overcome three difficul-
ties: dynamical changes, viewpoint changes, and scene cat-
egorization. In a highly dynamic environment (i), places
might look very different over time because of illumination
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changes (daytime, nighttime) and because of moved objects:
parking lots are empty on holidays. These changes are dy-
namic because their appearances are stable only for only
some period of time. Regarding the second sub-problem
(ii), different viewpoints often make a scene look different.
This problem also includes changes in weather and lighting
conditions. An object’s appearance might be very differ-
ent when observed from different camera positions, even if
viewed at exactly same time. Scene categorization (ii) de-
scribes how the robot understands the scene so that it can
categorize new unseen places along with those it has seen
previously. Inspired by biology, this ability further reduces
the gap separating robots and humans. Recent scene recog-
nition approaches might be divided into three main types:
Object-Based, Region-Based, and Context-Based.

To date, most approaches to scene recognition have
been object-based [4]-[6]. Using such approaches, a scene
location is recognized by identifying a set of landmarks
known to be included in a scene. These approaches are
prone to carrying over and amplifying low-level errors along
the stream of processing. For instance, upstream identifica-
tion of small objects (pixel-wise) is hindered by the down-
stream noise inherent to camera sensors and by varied light-
ing conditions. This is problematic in spacious environ-
ments where landmarks are more dispersed and more distant
from the agent. This approach must be environment-specific
to ensure the simplicity of selecting a small set of anchor ob-
jects as landmarks in an open problem.

For region-based scene recognition, the segmented im-
age regions and their configurational relations are used to
form a signature of a location. The major problem hin-
dering this approach is reliable region-based segmentation,
in which individual regions must be characterized robustly
and associated. Naive template matching involving a rigid
relation is often insufficiently flexible in the face of under-
segmentation or over-segmentation, which is often true with
unconstrained environments, such as outdoors. Some tech-
niques such as normalized-cut [17], [35] are useful to im-
prove segmentation quality. Nevertheless, the computation
time for image segmentation might be problematic for real
time applications.

Context-based approaches, unlike both previously de-
scribed approaches, bypass traditional processing steps.
Context-based approaches examine the input image as a
whole and extract a low-dimensional signature that com-
pactly summarizes the image’s statistics and semantics. The
challenge of discovering a compact and holistic representa-
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tion for unconstrained images has therefore prompted con-
siderable research effort recently. Renniger and Malik [18]
use a set of texture descriptors and a histogram to create
an overall profile of an image. Ulrich and Nourbakhsh [19]
build color histograms and perform matching using a vot-
ing classifier. Oliva and Torralba [20] encode some spa-
tial information by performing 2D Fourier Transform anal-
yses in individual image subregions on a regularly spaced
grid. The resulting spatially arranged set of signatures, one
per grid region, is further reduced using principal compo-
nent analysis (PCA) to yield a unique low-dimensional im-
age classification. In more recent implementations, Torralba
et al.[21] used steerable wavelet pyramids instead of the
Fourier Transform to solve the robotic localization.

Among the three approaches described above, PIRF
is most related to an object-based approach, in the sense
that natural landmarks would be used as a signature of
place. Our selection is motivated by the observation that
outdoor scenes generally include distant objects such as dis-
tant buildings or walls. These distant objects seem to ap-
pear constantly in scenes irrespective of the camera position.
Even in a highly dynamic scene where major components of
scenes are changed, these small distant objects still appear.
In this case, global representation of whole scenes might
be problematic; such scenes include many unstable nearby
objects whose subsequent recognition fails. Therefore, we
address this highly dynamic scene recognition problem as:

1. how to detect objects autonomously which are visible
to almost every position in such place;

2. how to detect objects autonomously which are unique
to a single place; and

3. how to describe such objects precisely despite their dis-
tance.

These distant objects can be a good signature of each place;
a group of these objects can be used efficiently to identify
places. As described herein, we propose a Position-Invariant
Robust Feature (PIRF) as an image local feature that solves
these three problems.

The PIRF is developed upon existing local descriptors
such as Scale-Invariant Feature Transformation (SIFT)[7]
and Speeded Up Robust Feature (SURF)[13]. Local fea-
tures extracted from many individual images are filtered to
derive the descriptors which appear repeatedly in almost ev-
ery scene (taken at the same place). These descriptors are
averaged to generate a single representative descriptor called
PIRF. Filtering is done autonomously using simple feature
matching as in an earlier study [7]. Considering Fig. 1, given
several SIFTs extracted from many interesting points of an
image (left), and assuming that some SIFTs appear repeat-
edly in a few more sequential images, PIRFs are then gen-
erated by interpolating those corresponding SIFTs. Figure 1
(right) shows PIRFs extracted from standard SIFTs. In this
case, almost all PIRFs are only of distant objects, whose
appearances are very stable. This solves the first problem.
One place can be represented using several PIRFs because
one place might include many distant objects; each requires
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many PIRFs for representation. For later reference in this
paper, we call these representative PIRFs (for one individ-
ual place) a PIRF-dictionary. For example, three places re-
quire three PIRF-dictionaries for representation. Because
of the descriptive power of the existing descriptor, detected
objects can be described precisely using a set of PIRFs (rep-
resentatives of slow-moving SIFTs or SURFs). This solves
the third problem described earlier. However, it is also clear
that collecting many PIRFs will eventually pose the prob-
lem of many duplicated PIRFs, which confuse recognition
in the long run. Therefore, we additionally propose a tech-
nique for eliminating these redundant PIRFs. The technique
is incremental; at any time, it can rapidly search for redun-
dant PIRFs and delete them from memory. This solves the
second problem above.

We also describe a simple approach to use PIRFs for
scene recognition. The recognition system is portrayed in
Fig.2. Assume that an environment contains five separate
places. Each place has its own PIRF-dictionary 9,i < 5
for representation. First, a set of SIFTs is extracted from a
testing image. Feature matching is performed to match each
single SIFT to a set of PIRFs in each dictionary. A place,
whose dictionary contains the highest number of PIRFs that
can be matched to the extracted SIFTs, is justified as the
winner. In Fig.2, for instance, both the first and the sec-
ond image belong to place 1 because the number of matches
between SIFTs and PIRFs in D' is the highest.

Fig.1  Sample omnidirectional outdoor image extracted with original
SIFT (left) and the proposed PIRF (right). The distant objects’ appearances
are invariant to position changes.
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Fig.2  Illustration of PIRF voting for scene recognition. Each dictionary
votes for the matched PIRF included in an input image. The voting result
justifies the location of the scene.
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To demonstrate the advantages of PIRF, we test it on
1000+ outdoor omnidirectional images collected from two
campuses. Training and testing data are collected, respec-
tively, on holidays and weekdays to address the difficulties
of highly dynamic changes over time. The results show
that PIRF obtains a markedly higher rate of recognition than
other features.

We also describe a simple robot navigation method
that uses PIRF (designated as PIRF-Nav) as a basic feature,
to confirm PIRF’s importance in relation to robotics. The
PIRF-Nav is tested on one campus. The image dataset is
identical to that used previously for scene recognition. Re-
sults show that PIRF-Nav outperforms Incremental Spectral
Clustering [15], [16] in both time and accuracy.

2. Related Works

Various approaches used in the past have addressed Scene
and Place recognition. Many effective features and various
modes of use have been proposed. Histograms of image
properties, e.g. color[19] or image derivatives have been
used widely in place recognition. However, after SIFT [7]
was popularized among the vision community, it came to
dominate feature choice in place recognition systems [15],
[22],[23]. The SIFT features are invariant to scale and are
robust to rotation changes. The 128 dimensional SIFT de-
scriptors have high discriminative power, but are simultane-
ously robust to local variations [39]. For place recognition,
SIFT outperforms edge points [9], pixel intensities [38], and
steerable pyramids [37].

As the most appealing descriptor for practical uses,
SIFT has been used widely in appearance-based navi-
gation [10], [11] because matching digital image contents
among different views of scene requires a good distinctive
invariant feature. Although SIFT satisfies such a require-
ment, its computation time and memory cost are high. As a
remedy, Ledwich and Williams [12] reduced SIFT features
by taking advantage of the structure of the indoor environ-
ment where average view-depths of most images are short.
This makes vertical planes such as walls dominate an im-
age’s composition. The rotational invariance of SIFT has
also been removed by assuming that the viewpoint for in-
door images will be stable to rotation around the view axis,
resulting in a non-rotated orientation of the keypoint de-
scriptors located on vertical surfaces. The method is specif-
ically useful for indoor environments.

Meanwhile, Oliva and Torralba[20] suggested that
recognition of scenes can be achieved using “global con-
figurations”, without detailed object information. Conse-
quently, statistical analysis of SIFT distribution became
popular. Torralba et al. [21] use global image features to
generate Gaussian Mixture Models for place recognition,
using fixed variance. The method gives limited tolerance
for appearance variation and is not invariant to translation or
scale changes. Lazebnik et al. [9] use the k-means algorithm
to cluster SIFT features, and cluster centers were used as
the codebook to solve 15-class scene recognition. Cummins
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and Newman [29] integrate bag-of-visual-words (BoW) into
the recursive probabilistic Bayesian framework and achieve
performance beyond the localization. That method can de-
termine that a new image has come from a previously unseen
place. Later, Angeli et al. [23] proposed incremental BoW.
Starting from an empty dictionary, the system can gradu-
ally collect new words while localizing places. Recently,
Wu and Rehg[36] proposed the spatial Principle Compo-
nent Analysis on Census Transform (sPACT) as a feature for
scene recognition and categorization. Its performance has
proven to be better than that of the BoW method [9]. The
authors reported the highest accuracy over the KTH-IDOL
dataset [31].

In robotics, scene recognition and localization are also
important topics. Several previously proposed methods
should also be acknowledged here. Robot localization can
be done based on vision alone [19], [24], [25], [30], or based
on combinations of vision and other sensors (e.g., laser-
scanner, odometer)[19],[26]-[29]. The methods can be
performed either offline or online for use indoors or out-
doors. Clemente et al. [26] generated metric maps based
only on a hand-held camera. The key ingredient of the
method is the inverse-depth representation [34], which can
estimate the depth of local features even in a single obser-
vation. The camera motion is an important concern for rep-
resenting the main map. Royer et al. [25] reported their suc-
cess in building the 3D reconstruction of map from sequen-
tial scenes by calculating the robot motion. Distinct from
[25] and [34], the method of Luo [32] emphasizes single-
image recognition: neither robot motions nor its position is
incorporated in the method. The incremental support vec-
tor machine (SVM) is used to train the localization system
for indoor use. The authors apply two techniques to extend
SVM to an incremental version: Fixed Partition and Error-
Driven. Nonetheless, the incremental step used in their work
contains some images partitioned by the user. The method
must go offline until the step has been completed. In ad-
dition, the adopted error-driven technique requires a human
to stand by the robot’s side and tell it whether the recog-
nition is corrected or not. Valgren and Lilienthal [15], [16]
use incremental spectral clustering (ISC) to cluster images
and thereby create a topological map. Their method was
reported as a fully incremental mapping method in highly
dynamic outdoor environments (across seasons). The num-
ber of nodes in the map (data segmentation) is determined
autonomously. The incremental BoW [23] is also a fully in-
cremental mapping method. An empty dictionary can be
updated incrementally. This method is considered as state-
of-the-art vision-based mapping. However, the method ad-
dresses only the loop-closure detection problem; all ob-
tained images up to the current time are included in the pro-
cess of probabilistic decision-making. They did not report
the recognition rate of a single image. In other words, their
method is especially applicable for robotics. Furthermore,
they did not address the problem of highly dynamic changes
in scenes; all images in the study seem to be collected on
one day.
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Here we confirm again that PIRF is new. From a com-
puter vision perspective, PIRF is more discriminative than
global features, but less noisy than using standard local fea-
tures. Unlike other object-based approaches, PIRF can au-
tonomously detect the landmarks which are robust against
highly dynamic changes of scenes. From a robotic perspec-
tive, navigation based on PIRF (PIRF-Nav) outperforms ISC
in terms of time and accuracy. PIRF-Nav is incremental
like [23]; it can recognize single images and close the loops,
while its performance is beyond localization like the method
of [29]; it can determine that a new observation come from
a previously unseen places. Its robustness against dynamic
change also leaves some room for additional improvement
and applications (i.e., using PIRF as the local feature for
generating BoW).

3. PIRF Definition

A Position-Invariant Robust Feature (PIRF) is a single local
feature that is robust to any position along the path within
the same place. The idea comes from observing that outdoor
scenes generally include faraway objects. These objects are
useful to identify the place because their appearance is sta-
ble, irrespective of position changes. Precisely, PIRF is a
single local descriptor computed as the average of existing
local descriptors, such as SIFT [7] or SURF [13], which has
wide baseline visibility. Actually, a PIRF must be extracted
from sequential images because it must retrieve all associ-
ated features from these images and compress them into a
single PIRF. Many single PIRFs are collected to form an
individual PIRF-dictionary of a place (one place contains
many sequential images). An individual dictionary is a sig-
nature of an individual place. In other words, a video se-
quence is segmented into N places (partitions). Each place i
contains n; sequential images. It seems very difficult to find
a fine number of features that appear in all images. There-
fore, the place is divided into many sub-places before ex-
tracting PIRF. Figure 3 portrays extraction of PIRFs from a
single place. By repeating this extraction process for every
place, N dictionaries can be obtained, where each contains
PIRFs used for representing an individual place. The algo-
rithm has three main stages: Sequential Image Matching,
PIRF Extraction, and Place Recognition.

3.1 Sequential Image Matching

Given N as the current number of all visited places in an
environment, »; is the number of members of the sequential
image set I; = {I,...,I,} of the it place, wherei < N, I,
is the ¢'" image in the set, ¢ < n;. Each image is described
by the 128-D SIFT feature extracted by the standard SIFT
algorithm [7]. SIFT matching is performed sequentially for
every pair of images; namely (I} — L), ..., (I,-1 — I,,,). We
use the same matching criteria as that used in an earlier
study [7]. The threshold value is set to 0.6. After ev-
ery pair of images has been matched, the matching result

is retained as the matching index vector of the i place,
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Fig.3 Sample PIRF extraction of the i”* place. Given the number of
sequential images n; = 7 and the size of sliding window w = 3. Number
of extracted SIFT from each image is 6. Every image pair is compared
using feature matching, resulting in six matching index vectors. A vector
element is the index of the corresponding feature in the next image. For
example, for the first sub-place (7, 75, 715) of Iy, I, I3, I, there are only
three features appearing in all images: (1,3,6,1), (4,1,1,2), (6,3,6,1).
(1,3,6,1) is interpreted, respectively, as the 1%, 3/, 6 and 1% feature of
image I, I, I3, I4. These four features are interpolated to obtain a single
representative PIRF. Therefore, there would be 3, 4, 4, 3 PIRFs for the 1%,
ond 3rd apd 4th sub-place respectively, 14 PIRFs in all for the whole ith
place.

- i i . . .
m, = (ml’q,...,mkq’q), where 1 < g < n;, k, is the index

number of local features of image /,.; of the i place. That
is, mj(q!q is the integer indicating the index of the local fea-
ture in image I, that match to the (kq)’h feature in image .
For example,ﬁ{ = (10, 0) is interpreted as the first match-
ing between I, and I, of the i place results in, out of two
features, only one matched feature. The first feature of I;
matches the tenth feature of I,, whereas the second features
of I; are not found in the image /,. As described herein, we
select the SIFT of [7] as our descriptor.

3.2 PIRF Extraction

Considering the (1;)"" image (the last image of the i’ place),
after n; — 1 matching index vectors 7 are derived, then
the PIRF is extracted. However, an object with a stable
appearance irrespective of the changed position is difficult
to find because the path might be long or curved. There-
fore, we instead extract those features which are position-
ally invariant in relation to the sub-place. Considering the
sequence of vector ?1; as the sequential input data, sliding
windows feature extraction is performed to collect PIRFs
from many sub-places instead of the whole place. For ex-
ample, if w = 3, then the first sub-place contains 7', 7},
W% corresponding to I, I, I3, 14, and the second sub-place
contains 75, s, 7', corresponding to I, I3, Iy, Is. The win-
dow size is w; the window is shifted by one, which means
that, given Dii as the PIRF-dictionary containing a set of de-
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Algorithm 1: PIRF Extraction of the i’" place
Require: 77 is the matching index vector, as shown in Fig. 3
Require: w is the sliding window size
l:for j=1ton;—w
2: fori =1tow
if isFouna’InAllImage(m;7 P w) then

3

4 M « retrieveAllCorre:v;,mndedFeature(i, Jri2, W)
5 E\ « interpolate(M)

6: D’, «— addNewEntry (D;., g_b\)

7: end if

8 end

9 D addNewEntry (Z)i s D'j)

0:

10: end

scriptors corresponding to the j# window (sub-place), there
would be n; — w + 1 dictionary for representing the place
when the extraction is completed.

The depiction of Algorithm 1 shows how extraction is
performed. Given n; images of the i”* place, and a set of
matching index vector 7 derived from sequential matching
in the previous sections, a sliding window of size w is cre-
ated to extract the PIRF of sub-places. For each sub-place
J» all matching index vectors 7 are processed to find those
local features which appear repeatedly in all images of the
current window (line 3). All corresponding w — 1 features
would be retrieved and put into the temporary matrix M if
such features were found (line 4). These features are in-
terpolated using averaging to obtain a single representative

feature ¥ . This feature E\;J is the x’* single PIRF of the

j" sub-place of the i*" place. Each extracted PIRF is grad-
ually collected into the PIRF-dictionary of the j* sub-place
D;. (line 6). This extraction process is repeated until the win-
dow is slid to the last image of the place. Each sub-place has
its own dictionary D, j < n;—w+ 1. These dictionaries are
finally concatenated mutually to form the dictionary of the
i place D' (line 9). Given d; as the number of PIRFs in the
dictionary of the j sub-place, ' as the PIRF dictionary of
the i place, and n, as the total number of PIRFs in 2V, the
PIRF dictionaries for representing all visited places D are
derived as presented below:

N

Y, D, D!
Di=| : [[D'=| i |.D=| : O]
N} i N
wd,,j Dn[—w D
=S4, @)

Therein, D is useful to represent all visited areas in the
environment. Extraction is incremental because the new
area can be simply added to the library. Additionally, it is
worth noting that extracted PIRFs must match images only
(ZL n,-) — 1 times, whereas the spectral clustering (SC) re-
quires (ZL ni) X ((Zil ni) - 1) /2 times to form the affinity
matrix. Although incremental spectral clustering (ISC) [15]
performs fewer image comparisons than SC, the compar-
isons are still much more numerous than those using our
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method.
3.3 Place Recognition

Now that all N individual places, P = {py,...,pn}, are well
represented using a set of corresponding PIRF-dictionaries
D = {Z)l, .. ,DN}, we can describe how these PIRF dic-
tionaries are used to recognize places. Majority voting is
selected as the recognition framework.

Majority voting (MV) is a popular combination scheme
because of its simplicity and its performance on real data. Its
performance has been demonstrated experimentally in many
studies such as handwriting recognition [40] and personal
authentication. We select MV because of its main concept
related to the independence of recognizers. Based on theo-
retical analyses, MV is apparently effective if the recogniz-
ers are independent. Considering our problem, we assume
that each place is independent. By applying MV to our prob-
lem, each place vote for the matched descriptors is found
in the testing image. Additionally, MV is suitable for the
task of incremental map-building in robotics, as described
in [22], because a similarity threshold for image compari-
son is not needed. The image is assigned to the place with
the maximum number of votes.

Consider the problem in which a single omnidirec-
tional image [ is to be assigned to one of N possible existing
places (p1,...,pn). First image I is extracted and a set of
descriptors, Z = (Z 1,..., Z n), is derived, where 7 is a sin-
gle image descriptor and 7 is the number of descriptors. Of
N places, each checks if the descriptor Z4, 1 < k < n is
similar to any PIRF in its dictionary ', 1 < i < N. The
vote is counted and the score is increased by one for every
matching: we initialize S; — O for every i,

S;i=8;+1 if
min |7} — E\lj| <, (3)
1<j<ng,

where 7 is the similarity threshold for feature matching (we
found earlier that 7 = 0.6 yields the best performance). The
vote from places can be done in parallel, thereby enabling
rapid recognition. After voting has been completed, the sys-
tem recognizes the image [ as

assign I — Pargmax;(s;)

with confidence

Si
-~ 4)
?I:l;jaéi(sj)

We have now described image classification to an existing
class. In the next section, we consider incremental topo-
logical mapping by which the input images might come to
belong to either an old or a new place.

Cargmax,(S;) =

3.4 PIRFs Reduction

In the view of long-term recognition, a main concern for
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using PIRFs is the amount of PIRF in the current system.
One PIRF-dictionary is used as a signature of one place.
Therefore, the number of dictionaries depends on the num-
ber of visited places. For long-term recognition, the number
of places is infinite, which means that the number of PIRF-
dictionaries would also be infinite. Two techniques are used
to solve this problem: reducing (i) the number of PIRFs or
(ii) the number of dictionaries. The first technique is to slow
the growth rate of PIRF. However, even though the number
of PIRFs grows very slowly, it will finally reach the mem-
ory limits. The second technique is used here to delete or
forget an unnecessary dictionary. The techniques are simple
but efficient.

Reducing PIRFs. Most PIRFs are of distant objects
whose appearances are robust against the change of view-
points along the path. These objects, on the other hand, are
also likely to be detected as distant objects in other places as
well. For example, Tokyo Tower is visible in many places
throughout Tokyo. Seeing the tower does not help in iden-
tifying the place. Therefore, the PIRFs which capture the
Tokyo Tower are useless and should be deleted. These
PIRFs might be treated as “redundant PIRFs”. To elim-
inate these PIRFs, training images can be re-used: some
recognized images were retained for the following retest.
By this retest, the system knows which PIRFs match to the
right object, and which PIRFs do not. Particularly, given
D, ={Dy,...,D,,} as the set of PIRF-dictionary up to time
t, and I as an input testing image, the dictionary with the
highest matched PIRFs, denoted by D,,;,, wins recognition
with confidence (vote quality) c¢. This recognition result
is used to update the scores of all PIRFs in all dictionar-
ies. For every matching between descriptor x of image [

and the corresponding PIRF ?:Vm of dictionary D,,;, where
1 <i< ng”, increase the score a’ of the PIRF by 1. In
contrast, for every matching between descriptor x of image
I and the corresponding PIRF &d?t_{ w'"], decrease the score
of the PIRF by 1. A high-score PIRF can be inferred as a
useful PIRF; it often matches features of a distinctive object
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in the place, whereas a low-score PIRF can be interpreted as
a PIRF which either captures confusing objects (an object
that is visible from many places) or which captures highly
sensitive objects (an object which is visible to only a few
camera positions in such places). After a re-test, almost all
PIRFs would already be assigned scores. Sorting the PIRFs
by their scores, the number of PIRFs can be reduced by rate
R (i.e., R = 0.75, R = 0.50). The reduction drastically
shrinks the PIRFs without a marked drop in accuracy. A
PIRF with @ = 0 is simply treated as a redundant PIRF.

Generally, this reduction technique is performed offline
because it must run a batch retest on previous images to up-
date scores of PIRFs. However, “when to update the scores”
is flexible; the robot can wait until it is free to take time
thinking of the past and to update the dictionaries. This re-
duction could be postponed if the robot was busy with some
task. This process can also be done online by taking advan-
tage of the assumption of physical robots. Actually, scores
can be updated every time the system recognizes a new im-
age. What the system must know is whether the recognition
result is correct or not. This is solvable by assuming that the
robot actually obtains more than two images before mak-
ing a decision. Therefore, once the system recognizes input
image I as place p,, (with corresponding dictionary D,,), it
continues recognizing the first and second next images to
confirm further that the images really belong to p,,; then it
updates the score of PIRFs. Details about this online re-
duction method are described in the next section of robotic
applications.

Figure 4 portrays PIRF scores obtained by running a
retest on all 382 training images. Most PIRFs were used at
least once. The score separates the good and the bad PIRFs.
We later show in Sect.4 that, even after reducing the size
of PIRF by 50%, the recognition rate is still high, which
underscores the effectiveness of the reduction.

Forgetting Places. Certainly, long-term recognition
will eventually confront the problem of memory overload
because the number of places is infinite. For that reason, a

Fig.4  Updated score of 22901 PIRFs corresponding to 15 places of Suzukakedai Campus. The re-test
was done over the same set of 382 images. The x-axis is the frequency score of the PIRFs, the axis is
the frequency score of the PIRFs, and the y-axis are the indices of all 22901 PIRFs. We found that the
dictionary with a high average score of PIRFs (i.e., PIRFs of index 11414—15629 of the 6 place D°) is
extracted from the isolated place where most of the faraway objects (i.e. high building) are not shared by

other places.
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robot must “forget” some places that are considered to be of
no use, or at least temporarily remove such places from the
searching space to speed up the localization time. In fact,
PIRF-based recognition uses the PIRF-dictionary as the sig-
nature of the whole individual place. Once the robot is sure
that a place will never be visited again, the corresponding
dictionary can be simply deleted, or moved to other mem-
ory spaces. Although the environments used for this study
are large in scale, they are not so large as to require the
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place-forgetting procedure. The technique for a larger en-
vironment, i.e. 100+ places is described here.

4. Application to Robotic Navigation

In robotic topological mapping, determining the number of
topological nodes (how to partition image data into classes)
is an important concern. Some previous works [21], [31],
[36] ignored this problem by partitioning image samples

(©)

@

Fig.5 Map of the outdoor experiment sites. (a) Twenty-three places manually segmented by hand
from Suzukakedai campus (left). An additional 13 places of Okayama campus were added (right). For
Suzukakedai, train data were collected on holidays under clear weather during daytime, whereas test data
were collected on weekdays under various conditions (i.e. cloudy, sunny, night). For Okayama, train and
test data are collected randomly on weekdays under various conditions over 3 months. (b) Sample of
images from place A21 (top) and AO1 (bottom) of Suzukakedai. The training image was collected on a
holiday (top-left), whereas the testing image was obtained on weekdays (top-right). Some training images
are taken in daytime (bottom-left), while the testing image was obtained in the evening (bottom-right).
Both images are unwrapped merely for illustration. (¢) Example of images of the Ljubljana lab taken
by iRobot ATRV-Mini from the COLD database of [33]. From two available sub-datasets, we select the
standard path database, which is taken from the Printer Area, Corridor, A shared office, and a bathroom
(shown respectively from left to right). In the study described in this paper, we use two different set of
sequences taken under cloudy, sunny, and nighttime conditions, constituting ca. 6000/6000 sequential
images of 640 x 480 pixels for use in training/testing. (d) Samples images taken in nighttime from the

same four places as in (c).
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manually into classes. Later, Valgren and Lilienthal [15]
proposed incremental SC (ISC) so that the algorithm be-
comes fully incremental. Nevertheless, partitioning based
only on appearance might yield too many nodes. For ex-
ample, the work described in an earlier study [16] has 160
nodes (classes).

In this section, we describe a simple but effective
method to use PIRF in topological mapping and localiza-
tion: the obtained performance is substantially better than
that of ISC. Our topological mapping is expected (i) to be
fully incremental, and (ii) to output a reasonable number of
nodes (matched well to the environment). Using the con-
cept of Spatial Semantic Hierarchy (SSH) described else-
where in the literature [8], we simply add the junction de-
tection module to the control layers of robot. This mod-
ule takes an omnidirectional image as input, unwraps it into
a panoramic image, and then classifies it as either a junc-
tion or non-junction image. This module would signify the
upper recognition system to set the partition boundary if it
judged the image as that of a junction. This guarantees that
the number of nodes or places in the map matches well to
the environment; it depends only on the number of detected
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junctions. For example, 580 training images of Suzukakedai
Campus (see Fig.5 (a-left)) are segmented into 23 places
with 19 junctions. After the partitioned images are obtained,
we can perform the recognition as in the previous section.

For this study, we implement a junction detection sys-
tem resembling that described in an earlier study [14]: color
histograms are used instead of Gaussian Mixture Models.
The only difference is that our detection is of omnidirec-
tional images. The assumptions resemble those of a prior
study [14] where the lowest area of the image is the road;
the upper part is the background. The road and off-road area
pixels are sampled to create models of 30 x 30 histograms
of red (R) and green (G) (because this setup yields the best
result according to [14]) for representing the road and the
background.

As depicted in Fig.5 (a-left), junction detection from
580 omnidirectional images is possible (circle). Particularly,
the system samples the road and background pixels of each
image and then performs binary classification (junction/non-
junction). For all 580 images, most junctions were detected
correctly with some small error contained (the system de-
tects the junction a few images before or after the correct
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Recognition Results (a) The overall performance of PIRF is shown in comparison with other

methods in term of accuracy (Gray->O-okayama, Black->Suzukakedai). (b-c) Other results on 489

testing images of Suzukakedai.

(b) The confusion matrix of recognition results of 489 images of

Suzukakedai (Row-> corrected classes, Column-> predicted classes). (¢) The confidence value of each
image recognized by our system. The average lines for correct and wrong recognition are estimated us-
ing 3' order polynomials. This confidence value is similar the quality of vote in the work of [22]. The
calculation method is the same. (d) The recognition times per image are shown. PIRF-n denotes PIRFs
reduced to n%. The PIRF-50 (Parallel) is the PIRF which has been reduced by 50% and each dictionary
vote for the matched PIRF in parallel. A comparison is made with Gist and sPACT.
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one). Precisely, four junctions were missed out of all 25
junctions. The image is first converted to a panoramic image
and is segmented by the system. The segmentation would
then be cropped at the part believed to contain all road van-
ishing points (we manually set the cropping size to 0.2-0.5
h, where h is the image height). Then, this cropped image is
filtered using a Gaussian filter with sigma = 1. The result-
ing image is averaged by each column to derive the vector
which would be smoothed using a pseudo-Gaussian. The
number of valid paths is determined by the number of peaks
above the mean value. Because of limited space, we do not
describe about the junction method in detail.

Now that the junctions have been detected and all
images have been partitioned into places, localization is
performed. Robot localization might differ slightly from
scene recognition; the recognition results of some images in
the current place are obtainable before making a decision.
Therefore, one step of the robot might contain n, images,
where ¢ is a time step. For each step, the robot recognizes
all n, images and then summarizes the votes of the nearest
place p* with reliability score r*. At this point, all n, im-
ages would have been recognized. The PIRFs would have
been extracted from these images and would have been col-
lected to the new dictionary "". If the score r* is greater
than threshold 6, then the current place recognized as p*
and D™ is neglected. Otherwise, the place is a new pre-
viously unseen place. A new dictionary D™ would be
augmented to a set of dictionaries, D,y = D; U {D""} =
(D, DY, D).

To examine the process in more detail, both the aver-
age value of confidence and the maximum rate of recog-
nition for the nearest place are considered to calculate the
reliability score r. Givenl; = {Ii, ..., I,} as the sequentially
observed image of the current place (n, > 2), with p; and ¢;
respectively signifying the assigned place and confidence.
The binary valued function as

_ 1 if pPi = k
Aii = { 0 Otherwise ©)

and p* as the nearest place class to which most input images
have been assigned, where the following hold

p=p; if

n n

Z Aij = max Zl Agi. (6)
i= i=

The set of images I is recognized as place p* = p; if

r'=rj= ni [wl- [ZA’/) +wy [Z Aijci]] <0 @)
! i=1 i=1

where 6 is the threshold set by the user. For this study, we
use 6 = 0.6, w; = 0.6, and w, = 0.4 (the importance lays
on the number of correct votes. Results show that recogniz-
ing new places as existing classes usually elicits low scores,
whereas recognizing old places to the corresponding class
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gains a much higher score (see Fig. 6 (c)). However, PIRF-
Nav requires at least two places (nodes) in the map as an
initialization before starting the incremental process. While
executing, the system obtains new input images and makes
a decision for each input image.

As described in previous section, the PIRF reduction
can be done in an online manner. Instead of running a batch
retest with a great number of re-used images, we incremen-
tally update the score for every recognition step using the
real testing images.

5. [Experiments and Results

Four main experiments are done to prove the advantages
of PIRF. Experiments 1, 2, and 3 examine scene recogni-
tion in both indoor and outdoor scenes. These experiments
show that PIRF offers a markedly better rate of accuracy
than other features for the task of highly dynamic outdoor
scenes, while retaining good result for indoor. Experiment
4 is to show that the PIRF-based navigation system outper-
forms ISC in terms of time and accuracy.

Three image databases were used for this study:
Suzukakedai Campus, O-okayama Campus and COLD.
Cognitive Systems for the Cognitive Assistants Localiza-
tion Database (COLD) dataset [33] was captured in a four-
room office environment, including a printer area, corridor,
two-person office, and a bathroom. Images were taken by
a robot. The purpose of this dataset is to recognize which
room the robot is in based on a single image. First regard-
ing the outdoor images datasets (Suzukakedai Campus and
O-okayama Campus), we collected them by setting a tripod
with height ca. 1.7 m. mounted with a camera (60D, DSLR;
Nikon Corp.) with an omnidirectional lens. We walk along
the road on campus while capturing omnidirectional images
every few meters. The camera positions along the road are
various (i.e., the position must be moved to the footpath
when the car is passing). The images are taken without
concern about pedestrians or cars running past by. Some
images contain a big blurred object, which actually is a run-
ning car. All images’ original resolutions were 3872 x 2592,
but they were scaled down to 640 x 428 for use in all exper-
iments. For Suzukakedai Campus, most training data were
collected on holidays under clear weather, whereas the test-
ing data are collected on weekdays under various weather
conditions, resulting in 580 images for training, and 489
images for testing. All images were collected according to
all three routes portrayed in Fig. 5 (a-left). For O-okayama
Campus, we collected more images from places A24-A36
in respect to the path portrayed in Fig. 5 (a-right). For this
campus, people crowded in the images taken on both holi-
days and weekdays, so all data were taken on weekdays at
various times and weather conditions. Data were collected
during 3 months, resulting in 450 images in all for train-
ing, and 493 images for testing. Figure 5 (b) portrays dif-
ferences between training images and testing images. All
experiments were written and run using software (Matlab
7.6.0.; The MathWorks, Inc.).
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5.1 Experiment 1: Recognizing Outdoor Scenes

This experiment is further divided into two sub-experiments
conducted respectively at Suzukakedai campus and
Okayama campus. At Suzukakedai, 580 omnidirectional
images were input to the system for training. The testing
is done over 489 testing images. The training images are
labeled by hand according to the junction detection result
obtained in experiment 4, resulting in 23 separate places
(A01-A23). We do this because, in the discussion related
to experiment 4, we can directly use the accuracy of this ex-
periment as the accuracy of PIRF for comparison to the ISC
method in experiment 4 (Sect.5.4). The difficulty of these
datasets is the great difference between training and testing
data. Changes occurring between images taken on holidays
and weekdays are considerable, as shown in the sample im-
age of Fig. 5 (b).

For O-okayama, the dataset is a bit different from
Suzukakedai. O-okayama images were not collected on dif-
ferent holidays and weekdays because this main campus is
always crowded on both holidays and weekdays. Data were
collected during 3 months to attempt recognition despite
changes occurring over a long period of time.

Two baselines were used for comparison. The first one
(i) is the 80-D Gist vectors used in the work of Torralba
et al.[21]. With six orientations of steerable pyramid and
four scales applied to the monochrome image, 580 Gist vec-
tors were derived from 580 training images. However, we
do not use the HMM as in [21] because the transition matrix
of labeled sequence data is not available. Therefore, we try
to use First Nearest Neighbor (1-NN) and Support Vector
Machines (SVM) as the classification framework for Gist.
We also tried 3-NN and 5-NN, but the results are mostly
equivalent to those of 1-NN. For the second baseline (ii),
the spatial Principal component Analysis on Census Trans-
form (sPACT) proposed by [36] is our choice because of
its recently highest result for indoor scene recognition over
the IDOL database of [31]. The training images are first
converted by the census transformed (CT) image; then the
CT histograms are created. Principle Component Analysis
(PCA) is then performed on the CT histograms to extract
the most important components among the distribution of
CT histograms. In this study, we also apply the level 2 spa-
tial pyramid, as done in [36]. As hinted in [36], choosing the
right classifier for a specific application is important. Con-
sequently, the classifiers used with sPACT are both NN and
SVM, in the same way as that done for the first baseline.

Results are presented in Fig.6(a). Actually, PIRF-
based recognition yields about a two times higher rate than
the others both for Suzukakedai and O-okayama. It is
noteworthy that the recognition rate is considerably lower,
at only 77.48%. We suspect that this occurs because
Okayama campus is a main campus crowded with many
people. Most parts of campus are not wide open compared
to the Suzukakedai campus. The campus contains crowded
buildings so that the problem of perceptual aliasing occurs.
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The Okayama campus contains many artificial structures
that make it similar to indoor areas with highly dynamical
changes. Suzukakedai contains more natural distant objects
than Okayama, thus having a higher rate.

We also report the confusion matrix of Suzukakedai in
Fig. 6 (b): errors are, in general, not distributed uniformly.
Taking a look into the place A21 (which confuses many
places), for instance, we found that the place is a large
open-wide area (sample of image from A21 is portrayed
in Fig. 5 (b-up) where many distant objects are shared with
other places). Although A21 shared some distant objects
with many places, place recognition is still efficient because
votes on other objects are useful for determination.

We believe that some reasons make the PIRF-based
recognizer outperform others in this experiment. Distant ob-
jects, which are robust to positional changes, usually appear
smaller than nearby objects. Consequently, global features
that capture a whole scene, such as Gist, include many un-
stable objects, e.g., cars, doors, a gate, people. The sPACT
provides a lower rate of recognition than our PIRF because
of its basic nature of feature extraction; sPACT converts the
whole image into the Census Transformed. Although its
performance is recently considered the highest for the IDOL
database, its accuracy is lower when tested on our highly dy-
namic outdoor scenes. Although sPACT is a local descrip-
tor with greater descriptive power than Gist features, SPACT
still includes many dynamic objects of the scenes. Being
sensitive to changes in camera positions, nearby objects can
strongly affect the recognition system.

Distinctive from the others, PIRF assigns emphasis to
distant objects while neglecting most nearby objects. The
underlying concept of PIRF-recognition differs from those
methods that perform segmentation (i.e., normalized cut)
before feature extraction. In fact, a PIRF can be extracted
without going offline for image segmentation. Unlike the
BoW approach, PIRF does not quantize the descriptors; it
can therefore preserve the distinctiveness of original local
descriptors. Consequently, PIRF can mostly overcome the
problem of highly dynamic changes because almost all un-
stable closed objects are ignored (see Fig. 10 for sample-
matched PIRF in testing images).

The confidence values in Fig. 6 (c) underscore the qual-
ity of the recognition provided by PIRF. Almost correct
recognitions display high confidence values, which can be
interpreted as the quality of vote in the same sense of [22].
This fact proves that PIRF is sufficiently discriminative for
place identification; the right dictionary only matches to the
right place. Consider Fig. 5 (b-top), for example, with two
different scenes taken on a holiday and weekday. While
training on holiday images (left), PIRF captures the dis-
tant building because its appearance is robust to position
changes. Therefore, although the testing image might be
changed dynamically and might share some distant objects
with other places, the number of votes on distant build-
ings would be adequately higher than other votes. How-
ever, it should be noted that, during image index 262-301
(see Fig. 6 (¢)), the confidence values are quite low because
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place A09 is mostly covered by trees along both sides of the
path. These trees block the view of distant buildings. There-
fore, distant objects are insufficient for justification. Nev-
ertheless, the recognition rate remains good because some
nearer objects, which are apparently stable for sub-places,
have been used instead.

With respect to the learning time used for model train-
ing and feature extraction, PIRF is faster than sPACT or
Gist. For every image in the Suzukakedai Campus, the aver-
age times for creating the CT histogram, Gist and PIRF are,
respectively, 29.2931s, 4.8219s, and 3.2312s. Based on
this result, PIRF and Gist are suitable for learning in real-
time applications. A comparison of two images can be done
quickly during the robot’s exploration. In terms of recog-
nition time (per image), PIRF is clearly slower than Gist or
SPACT because each encodes an image into only one feature
vector. In fact, PIRF trades off the recognition time for bet-
ter accuracy. However, the recognition time of PIRF-based
method can be reduced further using the reduction technique
described in Sect.2.4 to reduce the number of PIRFs and
slow the PIRF growth rate. Figure 6 (d) presents the accu-
racy values obtained for different number of PIRFs. Even
with 50% reduction of PIRF, the accuracy remains higher
than the other baselines. It is particularly interesting that
parallel votes (each dictionary votes simultaneously) can re-
duce the time to less than a second per image (Lowest Thick
Line in Fig. 6 (d)). Although that reduced time is still longer
than that of Gist, it might be acceptable for robotic naviga-
tion, for which the image capture rate must correspond to the
robot’s motions. Experiment 4 will show that PIRF-Nav ex-
ecutes more quickly than ISC, although its recognition time
is longer than that of either SPACT or Gist.

5.2 Experiment 1: Recognizing Outdoor Scenes

In the second experiment, the PIRF are tested on COsy Lo-
calization Database (COLD) of [33]. The COLD database
includes data collected by three robots. In this work, we se-
lect the data collected from Ljubljana laboratory (we desig-
nate the experiment using this database as “Ljubljana” here-
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inafter). We select two sequences of each weather condition:
cloudy 1 & 2, sunny 1 & 2, and night 1 & 2, in all six se-
quences (ca. 2000 images for each sequence). Training is
done on one sequence and the testing is done on the rest.
We repeat the experiments six times (all combinations) and
obtain averaged results as portrayed in Fig. 7. Although we
clearly claimed that PIRF is especially suitable for outdoor
scenes, it is also very common for any long-term system to
recognize both outdoor and indoor scenes. To prove that
PIRF can also be used indoors efficiently, we conduct this
experiment. Furthermore, this experiment proves that PIRF
is applicable to images collected by a real robot at various
times and in weather conditions (Fig.5 (c-d) portrays the
sample images of COLD taken in sunny and at night. The
baselines used in this experiment are the same as those used
in experiment 1: SPACT and Gist, and the referred result of
[33].

Although Gist and sPACT yield the highest accuracy
for this indoor database, PIRF also works well. Espe-
cially during daytime (trained or tested with either sunny or
cloudy), PIRF offers a high rate of about 93%-94%. In day-
time, the scene is clear and a sufficient number of extracted
SIFTs are used for PIRF generation. With more PIRFs, the
vote quality is high: it can recognize either sunny or cloudy
scenes correctly. When testing at night, although the number
of PIRFs is sufficient for recognition, the number of SIFT
extracted from a testing image is insufficient for represent-
ing an image. It is also true that darkness can reduce the
number of SIFTs. Consequently, the quality of votes for the
nearest place is low. It is also noteworthy that the unbal-
anced number of sample images does not affect the perfor-
mance of PIRF-based systems. In this experiment, a cor-
ridor was traversed many times by the robot, gathering ca.
1500 sequential images. The PIRF-dictionary of corridor is
also the biggest. However, the confusion matrix in Fig.8
shows that the different dictionary size does not engender
biased recognition.
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Fig.7  Averaged recognition results with COLD-Ljublajana standard sequences. Training is done on
one sequence and testing on the other sequences. (a) Train on sunny. (b) Train on cloudy. (¢) Train on
night. The comparisons are done to SPACT of [36] using NN as classifier, to Gist of [21] using NN as
classifier, and to results of Harris-Laplace with SVM [33].
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Fig.8 Results of combined sites. The matrix shows confusion among 40 dictionaries of 40 places
(Row-> corrected classes, Column-> predicted classes). The number of PIRFs for each place and the

memory required are shown.

5.3 Experiment 3: Combined Sites

In the experiment, we combine all experiment sites together:
Suzukakedai, Okayama, and Ljubljana sunny 1 & cloudy
1 sequences. Testing images from outdoor scenes are the
same as those used in experiment 1, although the testing im-
ages for Ljubljana are those of cloudy 1 (trained by sunny
1). This experiment shows that PIRF-dictionaries are suf-
ficiently distinctive even for recognizing a larger environ-
ment. The efficiency is unaffected by the imbalance of train-
ing samples in places with different sizes (i.e., the corridor
is longer than the bathroom). The results are shown as a
confusion matrix in Fig. 8.

Torralba et al. [21] navigated the robot indoors and out-
doors. We do the same by combining the PIRF-dictionaries
of Suzukakedai, Okayama, and indoor Ljubljana. The test-
ing images are the same set used previously. The results are
presented in Fig. 8. Results show that the accuracies of PIRF
are approximately equal—2009/2112 (95.12%), 423/489
(86.50%), and 375/493 (76.06%)—respectively, for Ljubl-
jana, Suzukakedai and O-okayama. The PIRF-dictionary is
not affected by the imbalanced image samples in each place.

Based on the obtained results, we conclude that two
main factors affect the PIRF’s efficiency. (i) The charac-
teristics of the place. Places with numerous objects block-
ing the distant view of the camera inject bad PIRFs into the
dictionary. With only a few distant objects, the PIRF must
capture some nearby objects instead. In addition, in cloudy
weather, sometimes a distant view in an image is too bright
(this is the problem of photography in which the illumina-
tion condition the space between the distant view and the

camera position is too different). In this case, only a very
few SIFTs would be extracted from distant objects. (ii) The
size of the place. A few image samples can cause failure of
PIRF extraction in the sense that only a few wide-baseline
features were found. For example, A16 and A19 obtained
a low rate of accuracy because they are much smaller than
other places, whereas A18 obtains low accuracy because its
high slope blocks most of the distant views. It must be clar-
ified that the imbalance of sample images of places does
not affect the recognition as long as the PIRFs in the dic-
tionary are sufficiently distinctive; this depends directly on
the characteristics of the place. For example, 1104 PIRFs
are sufficient for representing AO1. The numerous PIRFs
of C02 (15757 PIRFs) cannot confuse AO1, although only
2533 PIRFs of A31 confuses many places. Examining place
A31 (which confuses many places) for instance, we found
that the places are also open-wide areas where many distant
objects are shared with other places. Several buildings are
visible in this place. It is important to note that PIRF suits
a wide-open area: wide-open areas (i.e. A31, A21) them-
selves obtain a very high rate of recognition (100%), but
they can also confuse other areas. This might be resolved
simply by re-examining the confusion matrix and deleting
some PIRFs that are confusing. Nevertheless, overall, the
results show that the PIRF-dictionary is sufficiently distinc-
tive to offer a better recognition rate than other features.

5.4 Experiment 4: Inc. Topological Mapping
In this experiment, we show that PIRF is useful to solve

appearance-based topological mapping in an incremental
manner like that of ISC, but with less computation time. The
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baseline used in this experiment is the incremental spectral
clustering (ISC) of [15], [16]. We let both PIRF-based nav-
igation (PIRF-Nav) and ISC create the map incrementally.
The loops have been closed with neither false negatives
nor false positives, although the junction detection missed
4 junctions from among all 25 junctions (16.0% false nega-
tive). A comparison of time between ISC and PIRF-Nav is
presented in Fig. 9.

In terms of mapping time, PIRF-Nav builds the map in
ca. 30% of the usual time and tends to do so faster in larger
environments (Fig. 9 (top-row)). The ISC uses much more
time because of its necessary affinity matrix generation.
Precisely, ISC requires 167910 comparisons (46888.28s),
ISC requires 40757 comparisons (11996.80 s), and PIRF re-
quires 579 comparisons (3723.23s). In terms of recogni-
tion time, PIRF-Nav also recognizes a single-image rapidly
(Fig. 9 (bottom)). The ISC clusters the map into 159 nodes.
Therefore, the minimum number of comparisons necessary
for each recognition is 159. We further reduce the number
of PIRFs to reduce the localization time. We set the reduc-
tion rate to 25%, 50%, and 75% to reduce the PIRFs, and
classify the testing images again. The result presented in
Fig. 9 (bottom) respectively shows that the 75% and 50% re-
duced PIRFs still yield the same accuracy despite reducing
the localization time by ca. 25% and 75%.

Regarding accuracy, we implement the standard spec-
tral clustering (SC) as our baseline instead of ISC because
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SC yields a better rate of classification if k is appropriated.
Therefore, we ran SC for many different k and found that
k = 43 offers the highest accuracy. To classify the images
by SC without its associated position data, we simply label
489 testing images with respect to Fig. 5 (a-left). For exam-
ple, we consider that SC clusters training images no. 1-10 as
cluster 1, and images no. 11-25 as cluster 2. Consequently,
the testing images taken for area AO1 according to Fig. 5 (a-
left) are expected to match the images in either cluster 1 or 2.
As such, classification of the image from AO1 by SC would
be considered correct if the nearest cluster is 1 or 2. As a
result, SC offers 40.29%, while PIRFs offers 93.46%, two
times higher than SC.

Both SC and ISC represent places with a set of ref-
erence images. In a highly dynamic environment, training
images taken on holidays appear very different from testing
images taken on weekdays. This can cause failure of the
recognition. For example, AO3 depicts the main road at the
entrance of the campus; A21 shows the parking areas. These
two places look very different between peak and off-peak
times. A comparison between SC and PIRF might imply
that several raw SIFTs cannot recognize the highly dynamic
scenes. By SC, a set of reference images are retained for
matching in the recognition process. The matching is done
by local feature matching. If a major portion of an image
is changed, then major SIFTs of training images might be
unable to match those SIFTs in the testing image.

6. Discussion and Conclusions

The results obtained by our experiments show that PIRF rec-
ognizes large sets of both indoor and outdoor images with-
out the help of supervised learning tools such as SVM or
HMM. Precisely capturing the points of interest from dis-
tant objects, the number of local descriptors can be markedly
reduced while preserving their discriminative power.

Regarding accuracy, PIRF clearly outperforms other
features in outdoor scenes; it does well even in an indoor en-
vironment where distant objects are not ubiquitous. Instead
of natural distant objects, PIRF captures nearby objects with
a stable appearance. Figure 10 presents samples of testing
images with PIRFs matched to the correct dictionaries for
both indoors and outdoors. In Fig. 10 (Bottom) PIRF cap-
tures the decorations on the wall instead of distant objects.

One concern related to long-term scene recognition is
that the number of samples for each place is unbalanced be-
cause some places take less time to walk through, but oth-
ers can take much more time (i.e., the “corridor” dictionary
from Ljubljana contains more than 10,000+ PIRFs, whereas
the dictionary of “bathroom” contains only ca. 2000 PIRFs).
Regarding this concern, thanks to the discriminative power
of SIFT, all 40 combined dictionaries of PIRFs are suffi-
ciently distinctive to support recognition.

Another remarkable advantage of PIRF is the reduc-
tion rate of memory. Because PIRFs are sufficient to repre-
sent the place, the reference images are no longer needed.
Most previous approaches work with a database of refer-
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Fig.10  The sample images described by PIRF. The images are taken
from A28, A21, and CO3 respectively. For outdoor scenes, the PIRF tries
to describe the distant object such as building. For indoor, it captures the
most stable objects such as walls.

ence images [10], [19] for which the size depends heavily
on the area size. As depicted in Fig. 8, the memory nec-
essary to store all 3091 images (for combined sites) is ca.
991 MB, whereas the memory required for storing PIRFs is
57.65MB (71669 PIRFs, no reduction). Therefore, using
PIRF reduces the necessary memory size by ca. 94%.

The junction detection module, which is used to parti-
tion data into classes instead of clustering, is not the main
emphasis of this study. This problem might be regarded as a
problem of robot perception. A robot who cannot detect the
junction would be like a man who forgets to notice an inter-
section. Such a junction can be treated simply as a normal
straight path. Moreover, without a junction detection sys-
tem, PIRF can be used simply with preliminary partitioned
data like those described in earlier studies [31], [32], [36].

A profound effect of using PIRF is the utilization of
stable distant object information. However, PIRF has some
limitations and limited future research directions for im-
provement. One disadvantage of the current PIRF imple-
mentation is that (i) it strongly relies on the efficiency of the
local descriptors. SIFT is a highly discriminative local de-
scriptor. Therefore, the extracted PIRF can capture distinc-
tive features from objects precisely. On the other hand, this
disadvantage makes PIRF flexible for use with other local
descriptors, i.e. speeded up robust feature (SURF). Second,
(i1) PIRF requires input images as the sequences. Although
we have claimed that PIRF can solve the kidnapped robot
problem (appearance-based localization), it requires that the
length of image sequence be sufficient for PIRF extraction
(i.e. three images). In other words, PIRF is currently limited
to the recognition problem; its descriptive power is too great
to be used in the problem of categorization or understanding.
Third, in this paper, we use PIRF in a simple manner to rec-
ognize scenes. (iii) Collecting numerous PIRFs from many
places might finally produce a problem of duplicated fea-
tures. In addition to our PIRF reduction, vector quantization
might be another good choice. Because PIRF is a distinc-
tive feature in a highly dynamic environment, bag-of-PIRF
might be a good solution for highly dynamic environments.
Finally, although the time in PIRF extraction is faster than
that of either Gist or sPACT, its recognition time is slower
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(although it is faster than ISC). In this study, one place re-
quired about 500—1000 PIRFs for representation. Room ex-
ists for improvement here; one might be able to compress
these PIRFs further to speed up the recognition time.

The PIRF features, despite their simple implementa-
tion, can achieve promising localization performance, espe-
cially in terms of computation time. Comparing the cur-
rent ISC method [16], PIRF is useful to build the topologi-
cal map incrementally in considerably less time. Although
the current PIRF still requires more than a single image for
PIRF extraction, the current result appears promising for
future improvement. The localization time (single-image
classification) is also shortened considerably because the
dictionaries are sufficient for place recognition instead of
databases of reference images. Importantly, we do not claim
that PIRF-Nav is the most suitable navigation approach for
PIRF. We merely describe a simple navigation approach
to demonstrate that PIRF is useful for the robotic develop-
ment community. The standard local descriptors used by
the BoW approach [23], [29] do not perform well in highly
dynamic scenes. We believe that one might create more ef-
ficient robot navigation by considering PIRF, i.e. BoW cre-
ated from three feature spaces, one of which is PIRF.
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